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Despite the intense effort for nearly half a century to construct detailed numeri-
cal models of plastic flow and plastic damage accumulation, models for describing
fracture, an equally important damage mechanism still cannot describe basic frac-
ture phenomena. Typical fracture models set the stress tensor to zero for tensile
fracture and set the deviatoric stress tensor to zero for compressive fracture. One
consequence is that the simple case of the tensile fracture of a cylinder under
combined compressive radial and tensile axial loads is not modeled correctly. The
experimental result is a cylinder that can support compressive radial loads, but
no axial load, whereas, the typical numerical result is a cylinder with all stresses
equal to zero. This incorrect modeling of fracture locally also has a global effect,
because material that is fracturing produces stress release waves, which propagate
from the fracture and influence the surrounding material. Consequently, it would
be useful to have a model that can describe the stress relief and the resulting
anisotropy due to fracture.

MOSSFRAC is a material model that simulates three-dimensional tensile and
shear fracture in initially isotropic elastic-plastic materials, although its framework
is also amenable to initially anisotropic materials. It differs from other models by
accounting for the effects of cracks on the constitutive response of the material, so
that the previously described experiment, as well as complicated fracture scenarios
are simulated more accurately. The model is implemented currently in the LLNL
hydrocodes DYNA3D, PARADYN, and ALE3D. The purpose of this technical note
is to present a complete qualitative description of the model and quantitative
descriptions of salient features.
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Model Description

The model allows both tensile and shear fracturing. Tensile fracture occurs
when the maximum principal stress exceeds a user-defined threshold value. Shear
fracture occurs when the equivalent plastic strain exceeds a user-defined value.
We define an orthonormal set of three crack directions per computational zone.
There can be only one crack in each direction, so that there are no more than three
cracks per zone. Any combination of shear/tensile cracks is allowed. The crack
opening direction is normal to the most tensile principal stress, even if that stress
is compressive, so that closed shear cracks can be created. The orientation of the
crack triad is determined as the cracks form. The initial orientation of the triad is
arbitrary. The first time that the tensile or shear fracture criterion is reached, the
most tensile principal stress direction becomes one of the crack triad directions.
The remaining two are orthogonal to each other and coplanar in a plane normal to
the first direction until a second crack forms, which defines the second direction of
the orthonormal triad. The triad is determined completely from the cross product
of the first two directions. The crack algebra is formulated so that the cracks
open and close independently, while maintaining zero traction on open cracks.
Strength is maintained in the uncracked directions. The difference between the
material response to applied deformations in the cracked and uncracked directions
generates anisotropy.

The model has a general structure that is typical of many material models in
that an elastic strain increment results in a stress increment. By partitioning the
total applied strain increment dε into elastic (e), plastic (p), and crack (c) strain
increments, we isolate the elastic strain increment. We assume a linear relationship
between these tensor increments and write

dεe = dε− dεp − dεc. (1)

It is convenient (and traditional) to further partition the elastic strain increment
into deviatoric and dilatational components, which allows the deviatoric stress
increment to be calculated using the plasticity model, and the total dilatational
stress, or pressure, to be calculated using the equation of state. We write

dS = 2Gde′ and

P = f(V e, E), (2)

where e′ is the deviatoric elastic strain, S is the deviatoric stress, G is the current
shear modulus, and the pressure P is obtained from the equation of state f , which
is a function of the elastic volume V e (total volume minus crack volume) and
the internal energy E. The stress increment dσ can be calculated from the elastic
strain increment, when the values of dεp and dεc in Eq. (1) are determined, because
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the total applied strain increment dε is known. When the crack strains are zero,
the plastic strains can be determined easily and directly by various methods, such
as the radial return method. However, for the general case there is no analytic
method to determine plastic strains and crack strains that produce a stress state
that simultaneously satisfies plastic yield and traction-free criteria.

Figure 1 shows the split operator method we use for the combined effects of
plasticity and fracture. The applied strain increment is processed sequentially, as
shown in the figure. Part of the rationale for splitting the operators, as shown in
the figure, is that the model was constructed originally for use in DYNA3D, which
calculates plasticity first, then pressure.

Figure 1: Split operator method for obtaining the stress increment from the strain
increment. Plastic and crack strains cannot be determined simultaneously, so an
approximate method must be used.

• Fracture

– uncracked material: A trial stress increment is calculated from the
total applied strain increment, assuming isotropic elasticity and using
the current elastic moduli (two elastic moduli: bulk and shear). A trial
stress is obtained from the sum of the initial stress and the trial stress
increment. This stress is rotated into the principal frame. If the stress
exceeds the shear/tensile fracture criteria in one or more directions,
then one or more cracks are created and the stress is relaxed, so that
there are traction-free crack surfaces on open cracks.

– cracked material: The strain increment is rotated into the crack frame
and is “consumed” by open cracks, i.e., open cracks either continue
opening or consume enough strain to close. The remaining strain in-
crement dε− dεc is used to compute a trial stress increment, using the
current elastic moduli and assuming isotropic elasticity. A trial stress
is obtained from the sum of the initial stress (rotated into the crack
frame) and the trial stress increment. This stress is examined to see if
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it exceeds the shear/tensile fracture criteria, in any remaining unfrac-
tured directions. If the stress exceeds the shear/tensile fracture criteria
in any of the unfractured directions, then cracks are created and the
stress is relaxed to accommodate traction-free crack surfaces on open
cracks.

The additional crack strain increment due to the stress relaxation is calcu-
lated using the stress increment that is required to zero the surface tractions,
isotropic linear elasticity, and the current bulk and shear moduli. We allow
either zero or infinite friction on closed cracks. The remaining strain incre-
ment dε − dεc, where dεc is now the sum of all previously calculated crack
strain increments, causes material strain and is used to calculate elastic-
plastic deformation by the Plasticity subroutine.

• Plasticity

The strain increment dε−dεc that is calculated by the Fracture subroutine is
used to generate a stress increment and a trial stress. Consequently, any plas-
ticity model can be used. We use the well known Steinberg-Guinan model,
which consists of a pressure, density, and temperature dependent shear mod-
ulus, and a pressure, temperature, density, and plastic strain dependent yield
strength. Both elastic and plastic responses are isotropic. Placing the stress
deviators on the yield surface alters the total stress, which may no longer
satisfy the traction-free condition on open cracks. Another pass through the
fracture subroutine is required to reinforce the traction-free condition, but
first, the pressure is updated.

• Pressure

The pressure is typically a tabular or an analytic function of the specific
internal energy E and the relative volume η = V/Vo, where V is the volume
and Vo is a reference volume. If we consider the cylinder discussed earlier,
then it is clear that the pressure should be a function of the elastic or material
deformation ηe, because changes in the crack volume should not affect the
pressure. We write ηe = (V − V c)/Vo, where V c is the crack volume, which
can be computed from the three crack strains εc

i . We write

V c = Vo(exp(εc
1 + εc

2 + εc
3)− 1). (3)

A complete discussion of the crack strain formulation is given in the Ap-
pendix.
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• Fracture

The modifications of the stress by the Plasticity and Pressure subroutines
can result in a stress state that (i) no longer satisfies the traction-free con-
ditions for open cracks, (ii) creates new cracks, and (iii) closes open cracks.
Consequently, another call to the Fracture subroutine using an applied strain
increment equal to zero re-equilibrates the stresses. This final pass through
the Fracture subroutine is done primarily for aesthetic reasons, so that the
visualization of zones with open cracks is consistent.

This second pass through the Fracture subroutine results in a final stress state.

Symmetry Breaking (representation of inhomogeneity)

An axisymmetric simulation produces an axisymmetric result. An axisymmet-
ric experiment does not produce axisymmetric data. Symmetry breaking occurs,
because at some length scale, either the experiment is not truly axisymmetric
and/or the material is not homogeneous. We model symmetry breaking by al-
lowing the tensile and/or shear fracture criteria to differ from zone to zone. At
initialization, each zone is assigned a random number x∈ [0, 1]. A multiplier W is
calculated for each zone using a one-parameter Weibull distribution. We write

W = (
m ln(1−x)

1−m )
1/m

, (4)

where the most probable value of the distribution equals one and m controls the
width of the distribution (m > 1: when m = 10, FWHM= 0.25; when m = 30,
FWHM= 0.07). The material tensile strength and/or equivalent plastic strain
to initiate shear fracture are multiplied by the zonal value of W to create global
inhomogeneity.

Appendix: Crack Strains

In this section we discuss the equations that are used to calculate the crack
strains. Although the full model has equations for the complete crack strain tensor
(with either no friction or infinite friction on closed cracks), for simplicity, we
discuss only crack opening and closing, for 1, 2, and 3 cracks. The conditions for
determining which cracks are opening/closing are also not discussed here, but are
contained in the complete model.
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• Definition

The applied strain increment either opens/closes cracks and/or deforms ma-
terial, so the definition of the crack strain must be consistent with the defi-
nition of material strain. This means that total strains are the sums of the
increments, and allows the applied strain increment to be partitioned arbi-
trarily. The difficulty with this formulation occurs when we want to compute
actual crack openings and volumes from the strains. We proceed as follows.
We use “true” strains, so that an element of current length l that is extended
by an amount dl is strained an amount dl/l. (This strain definition is con-
sistent with that used typically in hydro codes to describe material strain
increments.) Again, using this one-dimensional deformation for simplicity,
we write the crack strain as dεc = dlc/l, where dlc is the incremental crack
opening and l, which is the current length of the zone, equals the sum of the
original length lo, the elastic stretch lel, and the crack opening lc. We write
l = lo + lel + lc. The elastic stretch should be small when there are open
cracks, which yields an approximate but analytic expression of the crack
strain, as a function of the crack opening. We write

εc =
∫ lc

0

dl′

l ≈
∫ lc

0

dl′

lo+l′ = ln
lo+lc

lo
. (5)

Eq.(3) follows directly from Eq.(5). The generalized equations for one, two,
and three open cracks are

• One crack open

dεc
1 = δεc

1 +
σ̃1

λ+2G, (6)

• Two cracks open

dεc
1 = δεc

1 +
(λ+2G)σ̃1−λσ̃2

4G(G+λ) and

dεc
2 = δεc

2 +
(λ+2G)σ̃2−λσ̃1

4G(G+λ) , (7)

• Three cracks open

dεc
1 = δεc

1 +
(λ+2G)σ̃1+λ(σ̃1−σ̃2−σ̃3)

6KG ,

dεc
2 = δεc

2 +
(λ+2G)σ̃2+λ(σ̃2−σ̃1−σ̃3)

6KG , and

dεc
3 = δεc

3 +
(λ+2G)σ̃3+λ(σ̃3−σ̃1−σ̃2)

6KG , (8)
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where G and K are the current shear and bulk moduli, λ = K − 2G/3, δεc
i=1,2,3 is

the portion (if any) of the applied strain increment (rotated into the crack frame)
that has been consumed previously by crack opening/closing, and σ̃i=1,2,3 is the
current trial stress.
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